3.295 \(\int \frac {(a+b \sinh ^{-1}(c x))^2}{\sqrt {d+c^2 d x^2}} \, dx\)

Optimal. Leaf size=47 \[ \frac {\sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^3}{3 b c \sqrt {c^2 d x^2+d}} \]

[Out]

1/3*(a+b*arcsinh(c*x))^3*(c^2*x^2+1)^(1/2)/b/c/(c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {5677, 5675} \[ \frac {\sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^3}{3 b c \sqrt {c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])^2/Sqrt[d + c^2*d*x^2],x]

[Out]

(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^3)/(3*b*c*Sqrt[d + c^2*d*x^2])

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 5677

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + c^2*x^2]/S
qrt[d + e*x^2], Int[(a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e,
 c^2*d] &&  !GtQ[d, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt {d+c^2 d x^2}} \, dx &=\frac {\sqrt {1+c^2 x^2} \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt {1+c^2 x^2}} \, dx}{\sqrt {d+c^2 d x^2}}\\ &=\frac {\sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^3}{3 b c \sqrt {d+c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 62, normalized size = 1.32 \[ \frac {\sqrt {c^2 x^2+1} \sinh ^{-1}(c x) \left (3 a^2+3 a b \sinh ^{-1}(c x)+b^2 \sinh ^{-1}(c x)^2\right )}{3 c \sqrt {c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSinh[c*x])^2/Sqrt[d + c^2*d*x^2],x]

[Out]

(Sqrt[1 + c^2*x^2]*ArcSinh[c*x]*(3*a^2 + 3*a*b*ArcSinh[c*x] + b^2*ArcSinh[c*x]^2))/(3*c*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b^{2} \operatorname {arsinh}\left (c x\right )^{2} + 2 \, a b \operatorname {arsinh}\left (c x\right ) + a^{2}}{\sqrt {c^{2} d x^{2} + d}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*arcsinh(c*x)^2 + 2*a*b*arcsinh(c*x) + a^2)/sqrt(c^2*d*x^2 + d), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}}{\sqrt {c^{2} d x^{2} + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)^2/sqrt(c^2*d*x^2 + d), x)

________________________________________________________________________________________

maple [B]  time = 0.07, size = 120, normalized size = 2.55 \[ \frac {a^{2} \ln \left (\frac {x \,c^{2} d}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{\sqrt {c^{2} d}}+\frac {b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{3}}{3 \sqrt {c^{2} x^{2}+1}\, c d}+\frac {a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{2}}{\sqrt {c^{2} x^{2}+1}\, c d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(1/2),x)

[Out]

a^2*ln(x*c^2*d/(c^2*d)^(1/2)+(c^2*d*x^2+d)^(1/2))/(c^2*d)^(1/2)+1/3*b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2
)/c/d*arcsinh(c*x)^3+a*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/c/d*arcsinh(c*x)^2

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 47, normalized size = 1.00 \[ \frac {b^{2} \operatorname {arsinh}\left (c x\right )^{3}}{3 \, c \sqrt {d}} + \frac {a b \operatorname {arsinh}\left (c x\right )^{2}}{c \sqrt {d}} + \frac {a^{2} \operatorname {arsinh}\left (c x\right )}{c \sqrt {d}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

1/3*b^2*arcsinh(c*x)^3/(c*sqrt(d)) + a*b*arcsinh(c*x)^2/(c*sqrt(d)) + a^2*arcsinh(c*x)/(c*sqrt(d))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2}{\sqrt {d\,c^2\,x^2+d}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c*x))^2/(d + c^2*d*x^2)^(1/2),x)

[Out]

int((a + b*asinh(c*x))^2/(d + c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{2}}{\sqrt {d \left (c^{2} x^{2} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))**2/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*asinh(c*x))**2/sqrt(d*(c**2*x**2 + 1)), x)

________________________________________________________________________________________